Acta Cryst. (1995). C51, 368-370

# [1,2-Bis(diphenylphosphino)ethane-P,P']-(4-morpholinecarbodithioato-S,S')nickel(II) Perchlorate Dichloromethane Solvate

R. AKILAN AND K. SIVAKUMAR

Department of Physics, Anna University, Madras 600 025, India

V. VENKATACHALAM AND K. RAMALINGAM

Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, India

K. CHINNAKALI<sup>†</sup> AND HOONG-KUN FUN

School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

(Received 19 July 1994; accepted 19 September 1994)

## Abstract

The crystal structure determination of the title compound,  $[Ni(C_5H_8NOS_2)(C_{26}H_{24}P_2)]ClO_4.CH_2Cl_2$ , indicates that the morpholine ring adopts two orientations related by a rotation of 180°. The perchlorate group is highly disordered and forms close contacts with both the morpholino ligand and the dichloromethane solvent molecule. However, there are no short contacts between the dichloromethane solvent and the complex molecule.

### Comment

Extensive studies have been carried out on the crystal structures and magnetic properties of 4morpholinecarbodithioato-metal complexes at room and low temperatures, and with different solvent molecules in the crystal lattice. It has been observed that the morpholine group can be disordered when dichloromethane or benzene are present as solvent molecules; this disorder has been attributed to the ease of loss of the solvent from the crystal lattice. In such cases, short contacts have been observed between the solvent molecule and the disordered morpholino ligand. In some cases, there is also disorder in the solvent molecule itself (Esperas & Husebye, 1975; Healy & Sinn, 1974; Butcher & Sinn, 1975, 1976; Stahl, 1983a,b). In the title compound, (I), disorder is observed in the perchlorate ion, which forms close contacts with the morpholino ligand. The dichloromethane molecule itself does not make any close contacts with the complex molecule but does form close contacts with the perchlorate group. This suggests

that the disorder in the morpholine ring can be induced when either solvent or anionic molecules are in its vicinity. The disorder can be resolved in terms of two separate chair conformations related by a rotation of  $180^{\circ}$ as shown in Fig. 2.



The Ni—P distances [Ni—P1 2.168 (1) and Ni— P2 2.160 (1) Å] are in the same range [2.165 (1)– 2.188 (1) Å] as those found in the structure of the [1,2bis(diisopropylphosphino)ethane]carbenenickel(0) complex (Gabor, Krüger, Marczinke, Mynott & Wilke, 1991). The present P—Ni—P angle [86.81 (4)°], however, is less than that observed in this nickel(0) complex [91.0 (1)°]. Generally, the P—Ni—P angle is greater than 93° for structures incorporating unbridged di- or triphenylphosphine ligands due to steric effects (Ramalingam, Aravamudan & Seshasayee, 1987) and therefore the ethane group may be the cause of the shortening of



Fig. 1. Structure of the title compound with 30% probability displacement ellipsoids. The disordered perchlorate group, the dichloromethane solvent molecule and the H atoms are omitted for clarity.



Fig. 2. The 4-morpholinecarbodithioato ligand showing two different orientations of the morpholine ring corresponding to a rotation of 180°.

<sup>†</sup> Permanent address: Physics Division, Alagappa College of Technology, Anna University, Madras 600 025, India.

the Ni-P bond lengths and the reduction in the P--Ni-P angle. The P-C distances are normal but one of the valence angles around P1 [Ni-P1-C9 125.4(1)°] deviates from normal values. The bond lengths and angles in the phenyl rings show normal values. The two phenyl groups in each of the diphenylphosphine moieties make dihedral angles of 85.2 (2) and 78.9 (2)° with respect to one another. The Ni atom has distorted squareplanar coordination, the maximum deviation from the mean plane being 0.331 (1) Å for atom S2. The Ni-S and S-C bond lengths are normal and do not show any appreciable asymmetic variations.

### **Experimental**

The preparation of the title compound was accomplished by established procedures (Ramalingam, Aravamudan, Seshasayee & Subramanyam, 1984; Ramalingam, Aravamudan & Seshasayee, 1987). The parent dithiocarbamato complex was prepared from morpholinium morpholine-4-carbodithioate and nickel chloride (Aravamudan, Brown & Venkappayya, 1971). Single crystals were obtained from dichloromethane solution by slow evaporation at room temperature.

#### Crystal data

| $ \begin{bmatrix} \text{Ni}(\text{C}_{3}\text{H}_{8}\text{NOS}_{2})(\text{C}_{26}\text{H}_{24}\text{P}_{2}) \end{bmatrix}^{-} & \text{Mo } K\alpha \text{ radiation} \\ \text{ClO}_{4}.\text{CH}_{2}\text{Cl}_{2} & \lambda = 0.71073 \text{ Å} \\ \text{M}_{r} = 803.72 & \text{Cell parameters from } 25 & \text{C26} & -0.0029 (6 \\ \text{Monoclinic} & \text{reflections} & \text{C27} & 0.5140 (5 \\ P2_{1}/c & \theta = 8-15^{\circ} & \text{C29A} & 0.6246 (1 \\ \theta = 22.745 (4) \text{ Å} & T = 293 (2) \text{ K} & 031A & 0.720 (5) \\ c = 16.707 (3) \text{ Å} & \text{Needle} & \text{C32A} & 0.6869 (1 \\ \beta = 93.16 (2)^{\circ} & 0.4 \times 0.3 \times 0.3 \text{ mm} & \text{N28B} & 0.5647 (1 \\ V = 3587.8 (12) \text{ Å}^{3} & \text{Orange} & \text{C29B} & 0.6286 (1 \\ \text{C32B} & 0.7746 (1 \\ \text{C32B} & 0.763 (5) \\ \text{C32B} & 0.763 (5) \\ \text{C32B} & 0.763 (5) \\ \text{C32B} & 0.574 (1 \\ \text{C32A} & 0.5874 (1 \\ \text{C32B} & 0.763 (5) \\ \text{C32B} & 0.7674 (1 $ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ClO4.CH2Cl2 $\lambda = 0.71073$ Å       C25 $-0.1072$ (6 $M_r = 803.72$ Cell parameters from 25       C26 $-0.0029$ (6         Monoclinic       reflections       C27 $0.5140$ (5 $P2_1/c$ $\theta = 8 - 15^{\circ}$ C29A $0.6445$ (1 $a = 9.456$ (2) Å $\mu = 1.010$ mm <sup>-1</sup> C30A $0.6226$ (1 $b = 22.745$ (4) Å $T = 293$ (2) K       O31A $0.720$ (5) $c = 16.707$ (3) Å       Needle       C32A       0.6869 (1 $\beta = 93.16$ (2)° $0.4 \times 0.3 \times 0.3$ mm       N28B $0.5647$ (1 $V = 3587.8$ (12) Å <sup>3</sup> Orange       C29B $0.6286$ (1 $Z = 4$ C30B $0.7746$ (1 $D_x = 1.488$ Mg m <sup>-3</sup> C31B $0.763$ (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $M_r = 803.72$ Cell parameters from 25       C26 $-0.0029$ (6         Monoclinic       reflections       C27 $0.5140$ (5 $P2_1/c$ $\theta = 8-15^{\circ}$ N28A $0.6226$ (1) $a = 9.456$ (2) Å $\mu = 1.010 \text{ mm}^{-1}$ C30A $0.6248$ (1) $b = 22.745$ (4) Å $T = 293$ (2) K       O31A $0.720$ (5) $c = 16.707$ (3) Å       Needle       C32A $0.6869$ (1) $\beta = 93.16$ (2)° $0.4 \times 0.3 \times 0.3 \text{ mm}$ N28B $0.5647$ (1) $V = 3587.8$ (12) Å <sup>3</sup> Orange       C29B $0.6286$ (1) $Z = 4$ C30B $0.7746$ (1)       O31B $0.763$ (5) $D_x = 1.488 \text{ Mg m}^{-3}$ C32B $0.7127$ (1)       C32B $0.7127$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MonoclinicreflectionsC270.5140 (5) $P2_1/c$ $\theta = 8-15^{\circ}$ N28A0.6226 (1) $a = 9.456 (2)$ Å $\mu = 1.010 \text{ mm}^{-1}$ C30A0.6248 (1) $b = 22.745 (4)$ Å $T = 293 (2)$ KO31A0.720 (5) $c = 16.707 (3)$ ÅNeedleC32A0.6869 (1) $\beta = 93.16 (2)^{\circ}$ 0.4 × 0.3 × 0.3 mmN28B0.5647 (1) $V = 3587.8 (12)$ ųOrangeC29B0.6286 (1) $Z = 4$ C30B0.7746 (1) $D_x = 1.488$ Mg m <sup>-3</sup> Of the transform of the transformation of the trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $a = 9.456$ (2) A $\mu = 1.010$ mm       C30A       0.6248 (1) $b = 22.745$ (4) Å $T = 293$ (2) K       O31A       0.720 (5) $c = 16.707$ (3) Å       Needle       C32A       0.6869 (1) $\beta = 93.16$ (2)°       0.4 × 0.3 × 0.3 mm       N28B       0.5647 (1) $V = 3587.8$ (12) Å <sup>3</sup> Orange       C29B       0.6268 (1) $Z = 4$ C30B       0.7746 (1) $D_x = 1.488$ Mg m <sup>-3</sup> C32B       0.7127 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $b = 22.745 (4) A \qquad T = 293 (2) K \qquad O31A \qquad 0.720 (3) c = 16.707 (3) Å \qquad Needle \qquad C32A \qquad 0.6869 (1) (3) A \qquad 0.4 \times 0.3 \times 0.3 mm \qquad N28B \qquad 0.5647 (1) V = 3587.8 (12) Å^3 \qquad Orange \qquad C29B \qquad 0.6286 (1) Z = 4 \qquad C30B \qquad 0.7746 (1) Oxage \qquad O31B \qquad 0.763 (5) C32B \qquad 0.7127 (1) C32B \qquad 0.763 (5) C32B \qquad 0.763 (5) C32B \qquad 0.7127 (1) C32B \qquad 0.763 (5) C32B \qquad 0.763 (5) C32B \qquad 0.7127 (1) C32B \qquad 0.7127 (1) C32B \qquad 0.763 (5) C32B \qquad 0.7127 (1) C32B \qquad 0.753 (1) C32B \qquad 0.753 (1) C32B \qquad 0.753 (1) C32B \qquad 0.753 (1) C32B \qquad 0.754 (1) C32B \qquad $                                                        |
| $c = 16.707$ (3) Å       Needle       C32A       0.0869 (1) $\beta = 93.16$ (2)° $0.4 \times 0.3 \times 0.3$ mm       C33A       0.7088 (1) $V = 3587.8$ (12) Å <sup>3</sup> Orange       C29B       0.6286 (1) $Z = 4$ C30B       0.7746 (1) $D_x = 1.488$ Mg m <sup>-3</sup> C32B       0.763 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\beta = 93.16 (2)^{\circ} \qquad 0.4 \times 0.3 \times 0.3 \text{ mm} \qquad \begin{array}{c} 0.334 & 0.7088 \\ N28B & 0.5647 (1) \\ N28B & 0.52647 (1) \\ C29B & 0.6286 (1) \\ C30B & 0.7746 (1) \\ O31B & 0.763 (5) \\ C32B & 0.7127 (1) \\ C32B & 0.7274 (1)$                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Z = 4$ $D_x = 1.488 \text{ Mg m}^{-3}$ $C298 = 0.0280 \text{ (12)}$ $C308 = 0.7746 \text{ (13)}$ $C308 = 0.7746 \text{ (13)}$ $C328 = 0.7746 \text{ (13)}$ $C328 = 0.7127 \text{ (13)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Z = 4 (300 0.774 (1)<br>$D_x = 1.488 \text{ Mg m}^{-3}$ (31B 0.763 (5)<br>C32B 0.7127 (1)<br>C32B 0.7127 (1)<br>C32B 0.7127 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_x = 1.488 \text{ Mg m}^3$ C32B 0.7127 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C32P 0.5674 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data collection C34 0.1172 (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Siemens <i>P</i> 4 four-circle $R_{int} = 0.0358$ Cl1 0.2030 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| diffractometer $\theta = 27.57^{\circ}$ Cl2 0.2250 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_{\text{max}} = 27.37$ Cl3 -0.0170 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\theta - 2\theta$ scans $h = -12 \rightarrow 12$ O1 0.1075 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Absorption correction: $k = 0 \rightarrow 29$ O2 -0.0226 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| none $l = 0 \rightarrow 21$ O3 0.000 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8522 measured reflections 3 standard reflections $04 -0.1436$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8245 independent reflections monitored every 100 01A 0.0798 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.243 macpendent reflections methods over $1.00$ $0.24$ $-0.0090$ (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3902 observed reflections $1616$ ctions $03A = -0.0399$ (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $[I > 2\sigma(I)]$ intensity decay: < 3% 04A = 0.1293 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 2. Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ni—P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Refinement on $F^2$ $(\Delta/\sigma)_{max} = -0.002$ Ni—P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $R(F) = 0.0510$ $\Delta \rho_{\text{max}} = 0.447 \text{ e } \text{\AA}^{-3}$ Ni—S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $wR(F^2) = 0.1306$ $\Delta \rho_{min} = -0.431 \text{ e} \text{ Å}^{-3}$ NiS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S = 0.960 Atomic scattering factors $S1-C27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $S = 0.009$ Atomic scattering factors $S_2 = C_27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8245 reflections from <i>International Tables</i> p1-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 457 parameters for Crystallography (1992, P1-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H-atom parameters not Vol. C, Tables 4.2.6.8 and P1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| refined $6.1.1.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $w = 1/[\sigma^2(F_{\rho}^2) + (0.0621P)^2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| where $P = (F_0^2 + 2F_c^2)/3$ C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ( $Å^2$ )

# $U_{aa} = (1/3) \sum_i \sum_i U_{ii} a^* a^* \mathbf{a}_i \cdot \mathbf{a}_i$

|        | υeq                                           | (1/2)=[=    | <i>je ija</i> , <i>aj</i> = <i>i</i> := <i>j</i> : |              |  |  |  |  |
|--------|-----------------------------------------------|-------------|----------------------------------------------------|--------------|--|--|--|--|
|        | x                                             | у           | Ζ                                                  | $U_{eq}$     |  |  |  |  |
| Ni     | 0.34673 (5)                                   | 0.52070 (2  | 2) 0.69655 (3)                                     | 0.04178 (15) |  |  |  |  |
| S1     | 0.41710 (12)                                  | 0.44922 (5  | o) 0.61808 (6)                                     | 0.0523 (3)   |  |  |  |  |
| S2     | 0.49575 (13)                                  | 0.47404 (5  | 5) 0.77950 (6)                                     | 0.0604 (3)   |  |  |  |  |
| P1     | 0.24779 (10)                                  | 0.58224 (5  | 5) 0.61166 (6)                                     | 0.0425 (3)   |  |  |  |  |
| P2     | 0.26153 (11)                                  | 0.57390 (5  | 5) 0.78957 (6)                                     | 0.0444 (3)   |  |  |  |  |
| C1     | 0.1856 (4)                                    | 0.6411 (2)  | 0.7465 (2)                                         | 0.0534 (11)  |  |  |  |  |
| C2     | 0.1190 (4)                                    | 0.6262 (2)  | 0.6635 (2)                                         | 0.0511 (10)  |  |  |  |  |
| C3     | 0.3888 (4)                                    | 0.6332 (2)  | 0.5889 (2)                                         | 0.0451 (9)   |  |  |  |  |
| C4     | 0.3598 (5)                                    | 0.6914 (2)  | 0.5684 (3)                                         | 0.0602 (12)  |  |  |  |  |
| C5     | 0.4669 (6)                                    | 0.7283 (2)  | 0.5492 (3)                                         | 0.0729 (14)  |  |  |  |  |
| C6     | 0.6041 (6)                                    | 0.7083 (3)  | 0.5480 (3)                                         | 0.082 (2)    |  |  |  |  |
| C7     | 0.6323 (5)                                    | 0.6518 (3)  | 0.5670 (3)                                         | 0.081 (2)    |  |  |  |  |
| C8     | 0.5265 (4)                                    | 0.6133 (2)  | 0.5876 (3)                                         | 0.0625 (12)  |  |  |  |  |
| C9     | 0.1658 (4)                                    | 0.5631 (2)  | 0.5137 (2)                                         | 0.0446 (9)   |  |  |  |  |
| C10    | 0.0389 (4)                                    | 0.5863 (2)  | 0.4862 (3)                                         | 0.0631 (12)  |  |  |  |  |
| C11    | 0.0162 (5)                                    | 0.5737 (3)  | 0.4100 (3)                                         | 0.081 (2)    |  |  |  |  |
| C12    | 0.0576 (6)                                    | 0.5377 (3)  | 0.3611 (3)                                         | 0.077 (2)    |  |  |  |  |
| C13    | 0.1828 (6)                                    | 0.5141 (2)  | 0.3882 (3)                                         | 0.0740 (14)  |  |  |  |  |
| C14    | 0.2376 (5)                                    | 0.5265 (2)  | 0.4646 (2)                                         | 0.0594 (11)  |  |  |  |  |
| CIS    | 0.3866(4)                                     | 0.5944 (2)  | 0.8703 (2)                                         | 0.0480 (10)  |  |  |  |  |
| C16    | 0.3808 (5)                                    | 0.5719 (3)  | 0.9458 (3)                                         | 0.083 (2)    |  |  |  |  |
| C17    | 0.4851(7)                                     | 0.5853 (3)  | 1.0036 (3)                                         | 0.098 (2)    |  |  |  |  |
| C18    | 0 5920 (6)                                    | 0.6221 (3)  | 0.9887 (3)                                         | 0.079 (2)    |  |  |  |  |
| C19    | 0.5973 (5)                                    | 0.6450 (2)  | 0.9145 (4)                                         | 0.085 (2)    |  |  |  |  |
| C20    | 0.4969 (5)                                    | 0.6318 (2)  | 0.8553 (3)                                         | 0.0735 (14)  |  |  |  |  |
| C21    | 0 1191 (4)                                    | 0 5341 (2)  | 0.8334 (2)                                         | 0.0494 (10)  |  |  |  |  |
| C22    | 0.11316 (5)                                   | 0.4752 (2)  | 0.8470(3)                                          | 0.0704 (13)  |  |  |  |  |
| C22    | 0.1300(3)                                     | 0.4435 (3)  | 0.8822(3)                                          | 0.085 (2)    |  |  |  |  |
| C23    | 0.0302(7)                                     | 0.4700 (3)  | 0.0022(3)                                          | 0.005(2)     |  |  |  |  |
| C24    | -0.0909 (7)                                   | 0.4700 (3)  | 0.3015(3)                                          | 0.070(2)     |  |  |  |  |
| C25    | -0.1072 (0)                                   | 0.5200 (3)  | 0.0000(-7)                                         | 0.114(2)     |  |  |  |  |
| C20    | -0.0029(0)                                    | 0.3000 (2)  | 0.0349(3)                                          | 0.059(2)     |  |  |  |  |
| C27    | 0.3140(3)                                     | 0.4203 (2)  | 0.7019(2)                                          | 0.0583(12)   |  |  |  |  |
| C 20 A | 0.0220(11)                                    | 0.3677 (5)  | 0.7005(7)                                          | 0.055(2)     |  |  |  |  |
| C 29A  | 0.0443 (13)                                   | 0.3407 (5)  | 0.0322(0)                                          | 0.007(2)     |  |  |  |  |
| COUA   | 0.0246 (13)                                   | 0.2639 (3)  | 0.0300(7)                                          | 0.000(2)     |  |  |  |  |
| CODIA  | 0.720(3)                                      | 0.2714 (1)  | (20) $(20)$ $(20)$ $(20)$                          | 0.102(7)     |  |  |  |  |
| C3ZA   | 0.0809 (13)                                   | 0.3073 (3)  | 0.7910(6)                                          | 0.060(2)     |  |  |  |  |
| C33A   | 0.7088(12)                                    | 0.3713 (5)  | 0.7730(0)                                          | 0.007(2)     |  |  |  |  |
| N 28B  | 0.5047 (11)                                   | 0.3/12 (3   | 0.7113(7)                                          | 0.053(2)     |  |  |  |  |
| C29B   | 0.6286 (11)                                   | 0.3497 (5)  | 0.7882(0)                                          | 0.007(2)     |  |  |  |  |
| C30B   | 0.7/40 (14)                                   | 0.3203 (0   | 0.7103(0)                                          | 0.060(2)     |  |  |  |  |
| 0318   | 0.763(3)                                      | 0.2820 (1   | 9) 0.7149 (20) 0.6439 (7)                          | 0.102(7)     |  |  |  |  |
| C32B   | 0.7127(13)                                    | 0.3038 (0   | ) 0.0428 (7)                                       | 0.060(2)     |  |  |  |  |
| C338   | 0.5674 (11)                                   | 0.3282 (3   | ) 0.0407 (0)                                       | 0.007(2)     |  |  |  |  |
| C34    | 0.11/2(7)                                     | 0.2297 (3   | 0.2470(3)                                          | 0.141(3)     |  |  |  |  |
| CII    | 0.2030(2)                                     | 0.29506 (   | 10) 0.25527 (15)                                   | 0.1467(6)    |  |  |  |  |
| CI2    | 0.2250(3)                                     | 0.16953 (   | 11) 0.2546 (2)<br>7) 0.50420 (0)                   | 0.1905 (11)  |  |  |  |  |
| CI3    | -0.01/0 (2)                                   | 0.21692 (   | /) 0.30429 (9)                                     | 0.0788 (4)   |  |  |  |  |
| 01     | 0.10/5 (17)                                   | 0.1835 (8   | ) 0.4945 (13)                                      | 0.104(9)     |  |  |  |  |
| 02     | -0.0226 (27)                                  | 0.2331 (1   | 2) 0.4295 (9)                                      | 0.197(11)    |  |  |  |  |
| 03     | 0.000 (4)                                     | 0.2669 (9   | ) 0.5460 (19)                                      | 0.293 (16)   |  |  |  |  |
| 04     | -0.1436 (24)                                  | 0.1941 (1   | 1) 0.5209 (24)                                     | 0.210 (14)   |  |  |  |  |
| OlA    | 0.0798 (18)                                   | 0.1860 (9   | ) 0.5367 (13)                                      | 0.190 (10)   |  |  |  |  |
| 02A    | -0.0090 (22)                                  | 0.2697 (9   | ) 0.4744 (23)                                      | 0.226 (15)   |  |  |  |  |
| 03A    | -0.0599 (28)                                  | 0.2225 (1   | 6) 0.5786 (9)                                      | 0.242 (13)   |  |  |  |  |
| O4A    | -0.1295 (19)                                  | 0.1839 (1   | 1) 0.4680 (13)                                     | 0.153 (10)   |  |  |  |  |
| Т      | Table 2. Selected geometric parameters (Å, °) |             |                                                    |              |  |  |  |  |
| NI: D2 |                                               | 2 1601 (12) | 0314 0324                                          | 1 36 (5)     |  |  |  |  |
| INI-PZ |                                               | 2.1001 (12) | C224 C224                                          | 1.50 (5)     |  |  |  |  |
| INIPI  |                                               | 2.10/9 (11) | CJ2A-CJ3A                                          | 1.30 (2)     |  |  |  |  |
| INI-52 |                                               | 2.1948 (12) | N20D C22D                                          | 1.47 (2)     |  |  |  |  |
| NI     |                                               | 2.2139 (12) | C200 C200                                          | 1.40 (2)     |  |  |  |  |
| SIC27  |                                               | 1.712 (4)   | C290 C210                                          | 1.30 (2)     |  |  |  |  |
| S2     |                                               | 1.708 (4)   | 0210 -0310                                         | 1.44 (3)     |  |  |  |  |
| r11.1  |                                               | 1.04.2 (4)  | UJIDUJLD                                           | 1.00 (0)     |  |  |  |  |

1.824 (4)

1.830 (4) 1.805 (4)

1.811 (4)

1.820 (4)

1.529 (5)

C32B-C33B C34—C11

C34-Cl2

C13—O1

CI3-02

C13-03

1.49 (2)

1.695 (7)

1.707 (7)

1.418 (13) 1.301 (14)

1.34 (2)

# $[Ni(C_5H_8NOS_2)(C_{26}H_{24}P_2)]ClO_4.CH_2Cl_2$

| C27—N28A             | 1.351 (13)  | Cl3—O4         | 1.35 (2)   |
|----------------------|-------------|----------------|------------|
| C27—N28B             | 1.347 (13)  | Cl3—O1A        | 1.253 (10) |
| N28A—C29A            | 1.49 (2)    | C13—O2A        | 1.304 (13) |
| N28A-C33A            | 1.48 (2)    | C13—O3A        | 1.333 (14) |
| C29A—C30A            | 1.51 (2)    | C13O4A         | 1.41 (2)   |
| C30A—O31A            | 1.48 (5)    |                |            |
| P1—Ni—P2             | 86.81 (4)   | N28A—C29A—C30A | 110.0 (9)  |
| P1—Ni—S1             | 102.69 (4)  | O31A-C30A-C29A | 109.8 (18) |
| P2—Ni—S2             | 93.93 (4)   | C32A—O31A—C30A | 110 (3)    |
| \$1Ni\$2             | 79.36 (4)   | O31A—C32A—C33A | 113.2 (15) |
| C27—S1—Ni            | 84.51 (14)  | N28A—C33A—C32A | 109.4 (10) |
| C27—S2—Ni            | 85.21 (14)  | C27—N28B—C29B  | 122.7 (11) |
| C3-P1-C9             | 104.1 (2)   | C27—N28B—C33B  | 123.7 (10) |
| C3-P1-C2             | 105.3 (2)   | C33BN28BC29B   | 113.5 (10) |
| C9—P1—C2             | 107.1 (2)   | N28B—C29B—C30B | 109.9 (9)  |
| C3—P1—Ni             | 104.67 (13) | O31B—C30B—C29B | 107.7 (22) |
| C9-P1-Ni             | 125.41 (14) | C32B-O31B-C30B | 113 (3)    |
| C2—P1—Ni             | 108.54 (13) | O31B-C32B-C33B | 112.0 (20) |
| C15—P2—C21           | 107.4 (2)   | N28BC33BC32B   | 109.7 (10) |
| C15—P2—C1            | 107.8 (2)   | CI1-C34-C12    | 114.6 (4)  |
| C21—P2—C1            | 107.1 (2)   | 01—Cl3—O2      | 91.8 (13)  |
| C15—P2—Ni            | 115.30 (13) | O1—C13—O3      | 115.9 (18) |
| C21-P2-Ni            | 109.00 (14) | 01-Cl3-04      | 124.8 (14) |
| C1—P2—Ni             | 109.92 (13) | O2—C13—O3      | 104.9 (14) |
| N28 <i>B</i> —C27—S2 | 123.4 (6)   | O2-C13-O4      | 108.5 (17) |
| N28A—C27—S2          | 122.4 (6)   | O3-C13-O4      | 107.8 (19) |
| N28B—C27—S1          | 123.5 (6)   | O1A-Cl3-O2A    | 128.8 (14) |
| N28A—C27—S1          | 123.7 (6)   | 01A-Cl3-O3A    | 84.5 (15)  |
| S2-C27-S1            | 110.8 (2)   | 01A-C13-O4A    | 113.6 (14) |
| C27—N28A—C29A        | 123.8 (10)  | 02A-C13-O3A    | 107.2 (17) |
| C27—N28A—C33A        | 122.1 (10)  | 02A-Cl3-O4A    | 112.5 (16) |
| C33A—N28A—C29A       | 112.4 (10)  | O3A-Cl3-O4A    | 101.0 (11) |
|                      |             |                |            |

Data collection, cell refinement and data reduction were performed using XSCANS (Siemens, 1991). The structure was solved by direct methods using SHELXS86 (Sheldrick, 1990a) and refined using SHELXL93 (Sheldrick, 1993). Atoms in the morpholine ring showed very high disorder with unreliable C-C bond lengths (1.12 Å). Moreover, the displacement ellipsoids for all the atoms in the ring were oriented in the same direction, *i.e.* perpendicular to the mean plane of the ring. Hence, it was decided to consider the morpholine ring as two entities with opposite orientations (A and B) and the occupancies of A and B were initially refined and then fixed at 0.5. The atoms in A and B were refined anisotropically with the same  $U_{ij}$  values being assigned to the same atom species  $(N28A \equiv N28B, O31A \equiv O31B, CnA \equiv CnB)$ . The O atoms of the disordered perchlorate group were divided into two sets, each having 0.5 occupancy, and refined anisotropically. The H atoms were fixed geometrically and not refined, but were allowed to ride on those atoms to which they are attached. SHELXTL/PC (Sheldrick, 1990b) software was used for the molecular graphics and PARST (Nardelli, 1983) was used for all other geometrical calculations.

One of the authors (KC) thanks Universiti Sains Malaysia for a Visiting Post Doctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: LI1125). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### References

Aravamudan, G., Brown, D. H. & Venkappayya, D. (1971). J. Chem. Soc. A, pp. 2744–2747.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Butcher, R. J. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 2517-2522.

- Butcher, R. J. & Sinn, E. (1976). J. Am. Chem. Soc. 98, 2440-2449,
- Esperas, S. & Husebye, S. (1975). Acta Chem. Scand. Ser. A, 29, 185-194.
- Gabor, B., Krüger, C., Marczinke, B., Mynott, R. & Wilke, G. (1991). Angew. Chem. Int. Ed. Engl. 30, 1666–1668.
- Healy, P. C. & Sinn, E. (1974). Inorg. Chem. 14, 109-115.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Ramalingam, K., Aravamudan, G. & Seshasayee, M. (1987). Inorg. Chim. Acta. 128, 231-237.
- Ramalingam, K., Aravamudan, G., Seshasayee, M. & Subramanyam, Ch. (1984). Acta Cryst. C40, 965–967.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). SHELXTL/PC Users Manual. Siemens
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stahl, K. (1983a). Acta Cryst. B39, 612-620.
- Stahl, K. (1983b). Inorg. Chim. Acta, 75, 85-91.

Acta Cryst. (1995). C51, 370-374

# fac-[Co(C<sub>5</sub>H<sub>4</sub>NOS)<sub>3</sub>].H<sub>2</sub>O. $\frac{1}{2}$ CH<sub>3</sub>OH and fac-[Co(C<sub>5</sub>H<sub>4</sub>NOS)<sub>3</sub>]. $\frac{1}{3}$ CH<sub>3</sub>OH

Yong-Jin Xu, Bei-Sheng Kang,\* Xue-Tai Chen and Liang-Reng Huang

State Key Laboratory of Structural Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

(Received 23 September 1993; accepted 1 June 1994)

### Abstract

Crystals of tris(2-mercaptopyridine N-oxido)cobalt-(III) monohydrate hemimethanol solvate, fac- $[Co(C_5H_4NOS)_3]$ .H<sub>2</sub>O. $\frac{1}{2}CH_3OH$  (1), contain fac- $[Co(III)(mpo)_3]$  (Hmpo = 2-mercaptopyridine Noxide), H<sub>2</sub>O and MeOH molecules linked by hydrogen bonds. The asymmetric unit consists of two molecules of the cobalt complex, two water and one methanol molecule. The asymmetric unit of the closely related complex tris(2-mercaptopyridine *N*-oxido)cobalt(III) <sup>1</sup>/<sub>3</sub>-methanol solvate, fac- $[Co(C_5H_4NOS)_3]_3CH_3OH$  (2), contains three discrete Co(mpo)<sub>3</sub> molecules and one MeOH molecule which is linked to one of the Co(mpo)<sub>3</sub> units via a hydrogen bond. The Co<sup>III</sup> complex molecules in (1) and (2) do not differ significantly. Each Co atom is coordinated by an O<sub>3</sub>S<sub>3</sub> donor set which defines a distorted facial octahedron. Three mpo ligands are chelated to each Co atom, the average O-Co-S